In the business world today,
Information Technology has many different uses. One of these many uses would be
deciphering a collection of data in order to better serve customers, create
products more efficiently, and to over all improve a company or organizations
profit. In the article, “Fujitsu develops new deep learning technology
to analyze time-series data with high precision”, the newest technology used to
decipher, organize and analyze specifically time-series data is described.
Time-series data is a specific type of data
that deals with collecting data over time. This type of data is used on a daily
basis within different organizations around the world. For example, a company
such as Wal-Mart might collect data in a time-series format in order to
understand trends among different product sales throughout the year. This
article mentions a new type of technology that will make analyzing time-series data
much more efficient called deep learning technology. This technology includes
mathematical techniques that will make it easier for computers to give
information based on time-series data.
This new mean of deciphering the many pieces
of information that can be collected using the time-series method will bring
about more efficient processes throughout any organization. Being able to
understand and ask questions based on this type of data can in many way improve
a company’s customer satisfaction, production efficiency, and profit
maximization. It also spurs the next step in supporting artificial
intelligence. While this is a task that is no doubt difficult and could have
possible negative implications (cost, etc.), it is the way our world is moving
towards.
The
article also mentions a few issues with this new deep learning technology. For
example, this new technology is limited in the type of data it can interpret.
Meaning there is much to develop before it will be able to decipher and
organize all types of data, instead of just time-series. This issue is one that
will continue into the future, until society is developing the type of
technology that can go beyond the present day. Another issue would be the fact
that this technology is still in the beginning stages and is very much a work
in progress. The success rate is under 100%, meaning the technology is still in
the testing phase. When society will be able to start putting this deep learning technology to work is still up in the air.
Despite
these few issues, this new deep learning technology is a large step for the
Information Technology industry.
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.